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Abstract
We study the conditions under which the critical behaviour of the three-
dimensional mn-vector model does not belong to the spherically symmetrical
universality class. In the calculations, we rely on the field-theoretical re-
normalization group approach in different regularization schemes adjusted by
resummation and extended analysis of the series for renormalization-group
functions. We address the question why the renormalization-group perturbation
theory expansions available for the model with a record (six loop) accuracy have
not allowed so far for a definite answer about the universality class for certain
particular values of dimensions m, n. We show that an analysis based on the
marginal dimensions rather than on the stability exponents leads to the robust
results about the phase diagram of the model.

PACS numbers: 05.50.+q, 64.60.Ak

According to the universality hypothesis [1], asymptotic properties of the critical behaviour
remain unchanged for different physical systems if these are described by the same global
parameters. The field-theoretical renormalization group (RG) approach [2] naturally takes
into account the global parameters and derives properties of critical behaviour from long
distance properties of effective field theories. In the present paper, we study the long-distance
properties of the d = 3-dimensional mn-vector model which is introduced by the following
effective field-theoretical Hamiltonian [3]:

H[φ(x)] =
∫

ddx

{
1

2

n∑
α=1

[|∇ �φα|2+µ2
0| �φα|2] + u0

4!
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(| �φα|2)2+v0
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)2 }
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Here, �φα = (φα,1, φα,2, . . . , φα,m) is a tensor field of dimensions n and m along the first and
the second indices, u0 and v0 are bare couplings and µ2

0 is a bare mass-squared measuring the
temperature distance to the critical point.

Depending on the choice of parameters m and n, the mn-vector model (1) is known to
describe phase transitions of various microscopic nature. The choice n = 1 comprises a bunch
of systems that are characterized by an O(m)-symmetric order parameter, while the limiting
cases n → 0 and n → ∞ correspond to these systems exposed to the quenched [4] and
annealed [5] disorder, respectively. The choice m = 1, arbitrary n, corresponds to the cubic
model [6]. A separate interest is provided by cases m = 2, n = 2 describing [7] helical magnets
and antiferromagnetic phase transitions in TbAu2, DyC2 as well as by cases m = 2, n = 3
describing antiferromagnetic phase transitions in TbD2, Nd.

All of the mentioned cases of the mn-vector model were subjects of separate extensive
studies (see e.g. [8–11] and references therein). They led to a consistent description of criticality
in the O(m) and cubic systems. In particular, the precise estimates of the critical exponents of
the cubic and of the random Ising model were established both within high-order expansions of
the massive and minimal subtraction field-theoretical RG schemes [8, 11]. In contrast, the cases
m = 2, n = 2, 3 remain controversial. The general non-perturbative consideration [6, 12]
brings about that the theory (1) belongs to the O(2) universality class, while the perturbative
field-theoretical RG approach yielded mixed data, neither proving nor rejecting this result
[8, 13] despite analysing expansions available now within the record (six loop) accuracy [8].
However, the RG study of two-dimensional mn-vector model [14] reproduces all the non-
perturbative results for the case m, n � 2.

The studies infer that an intrinsic feature of the theory (1) is an interplay between the O(k)

(‘trivial’) universality class (with k of dimension m or mn) and a new universality class. In
this paper, we address two problems that concern the crossovers in the mn-vector model and
still attract attention. Firstly, we aim to obtain a map of universality classes of the theory (1)
in the whole plane m � 0, n � 0. Such an analysis has been performed so far in the one-loop
approximation [6]. We base the analysis on the high-loop expansions for the RG functions
of the model (1) and its special cases; in order to refine the analysis we exploit Padé–Borel
resummation [15, 16] of the (asymptotic) series under consideration. Secondly, we focus
attention on cases m = 2, n = 2, 3 in order to explain why the highest orders of perturbation
theory have not allowed so far to resolve what universality class is realized in the theory. We
perform analysis in different perturbative schemes and show that only certain of them give a
reliable answer.

We analyse the theory (1) applying the field-theoretical RG approach [2] within weak
coupling expansion techniques. In the approach, a critical point corresponds to a reachable and
stable fixed point (FP) of the RG transformation of a field theory. A FP {u∗, v∗} is determined
as a simultaneous zero of the β-functions describing the change of the renormalized couplings
u and v under RG transformations and being calculated as perturbative series in renormalized
couplings. The equations for the FP read{

βu(u
∗, v∗) = u∗ϕ(u∗, v∗) = 0,

βv(u
∗, v∗) = v∗ψ(u∗, v∗) = 0,

(2)

where we have explicitly shown that the structure of the β-functions allows their factorization
for the effective Hamiltonian (1). We make use of both the dimensional regularization with
minimal subtraction [17] and the fixed dimension renormalization at zero external momenta
and non-zero mass (massive) [18] schemes. More precisely, we rely on the expansions for the
β-functions that are known at d = 3 with the accuracy of six loops in the massive scheme [19]
and with five-loop accuracy for the cases of O(m)-vector [20] and cubic models [21] in the
minimal subtraction scheme.
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For the analysis below it is important to mention that equations (2) for the FP can be
solved technically in two complementary ways. A perturbative solution is obtained by an
expansion of the FP coordinates in a small parameter (ε = 4 − d, with d being the space
dimension of the model [22], in the minimal subtraction or massive schemes, or an auxiliary
pseudo-ε parameter5 in the massive scheme) around the Gaussian solution {u∗ = 0, v∗ = 0}.
Such a method formally guarantees that the structure of solutions for the FPs remains the same
after accounting for higher-order contributions once it has been established in the one-loop
approximation. An alternative method (the 3d approach) consists in the solution of equation
(2) numerically [18, 25] at a given order of perturbation theory and provides less control on a
loopwise upgrade.

Within the perturbative approach, the conditions on m and n under which the critical
behaviour of the mn-vector model (1) belongs to a non-trivial universality class are known as
the Aharony conjecture and read [6]

nc < mn < mcn, n > 1. (3)

Here, nc and mc stand for the marginal dimensions of the cubic model and of the random m-
vector model. The conjecture is based on the one-loop stability analysis of four FP solutions
compatible with equations (2). At d < 4, these are the Gaussian FP G {u∗ = 0, v∗ = 0},
the FPs PO(mn) {u∗ = 0, v∗ �= 0} and PO(m) {u∗ �= 0, v∗ = 0} describing theories with one
φ4 coupling and thus corresponding to the O(mn) and O(m) universality classes, and, finally,
the mixed FP M {u∗ �= 0, v∗ �= 0}. It is the stability of the FP M that is necessary for the
appearance of a new non-trivial critical behaviour.

Our 3d analysis of the theory (1) is obscured by the observation that at some choice of
m and n more than four solutions for the FP are obtained. To convince ourselves that some
of them are not a by-product of application of resummation procedures we propose to use the
following argument. According to the basics of the RG theory, at the upper critical dimension
d = 4, any φ4 theory is governed by the Gaussian FP [2]. Therefore, any non-Gaussian
solution at d = 4 is out of physical interest. If such a solution survives at any d < 4 and
particularly at d = 3, we find it natural to consider it physically meaningless by continuity.
The situation becomes less clear if a FP cannot be continually traced back to a certain solution
at d = 4 because it disappears at some 3 < dc < 4. In this case the stability of the estimate for
dc as well as of the FP coordinates against application of different resummation procedures in
different orders of perturbation theory might serve the purpose. We note here that the special
case of the theory (1) with m = 2, n = 2 is known to have exact mapping onto the model
describing non-collinear magnetic ordering [26]. Within the massive RG scheme, the standard
six-loop 3d analysis of this model allowed one to find a stable FP which does not have the
counterpart within the perturbative ε-expansion [27]. But one could not follow the evolution
of the FP as d approaches 4 because in this case the resummation procedure was found to be
ill-defined [28]. Recently, the problem was analysed within minimal subtraction scheme [29],
but again the authors of [29] were not able to resum reliably the perturbative series for space
dimensions up to d = 4.

To establish the map of universality classes of the theory (1) we use both perturbative and
3d analysis complementarily. We find that, in addition to the conditions (3), the high-order
map is controlled by a degeneracy condition of one-loop equations for the FP [30]:

n = 16(m − 1)

m(m + 8)
. (4)

5 The pseudo-ε expansion technique was introduced by B G Nickel (unpublished); see reference [19] in [23]. For an
application of the pseudo-ε expansion in models with several couplings see [10, 24].
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Unlike order-dependent estimates for the marginal dimensions mc and nc, this equation is
independent of the order of perturbation theory and is exact. We also observe that the results
obtained with the account of high-order contributions differ qualitatively from those obtained
in the one-loop approximation. We consider worth to mention three peculiarities.

(i) We find a domain in the mn-plane where the high-loop resummed β-functions produce
no solution for the FP while such a solution exists in the one-loop approximation. In the
mn-plane, the domain spans from the vicinity of the point {m = mc, n = nc/mc} upwards.
There, we can solve equations (2) for the mixed FP reliably neither numerically at the fixed
space dimension d = 3 nor by application of the pseudo-ε expansion. In particular, although
the pseudo-ε expansion can be formally constructed there, its analysis by means of the Padé
[15] or Padé–Borel–Leroy [16] technique produces highly chaotic values both for mixed FP
coordinates and its stability exponents. (ii) We find a domain in the mn-plane where the 3d
analysis reveals two solutions for the mixed FP M co-existing in opposite quadrants of the uv-
plane. In the mn-plane, the domain is located below the point {m = mc, n = nc/mc}. Yet, we
are always able to establish that one of the two solutions is unphysical in the sense explained
above. The described phenomenon is quite stable with respect to the order of perturbation
theory and to the type of the resummation procedure applied. In the perturbative approach
only one solution for the mixed FP is present. (iii) We observe that a smooth change of
parameters m, n in some regions of the mn-plane can show up as a complex abrupt trajectory
of the FP M in the uv-plane.

Realization of various universality classes of the theory (1) besides universal equations
(3) and (4) depends on non-universal initial conditions for couplings. Certain physical
interpretations of the mn-vector model (1) impose restrictions for the signs of the couplings.
Namely, a group including the cubic model (m = 1, ∀n) and cases m = 2, n = 2, 3 imply u0

of any sign and v0 > 0 [6, 7], whereas the microscopic base of the weakly diluted quenched
m-vector model strictly defines u0 > 0, v0 � 0 [4]. Taking into account such a division along
with the pseudo-ε expansion-based estimates6 for the marginal dimensions nc = 2.862 ± 0.005
[10] and mc = 1.912 ± 0.004 [32], we arrive at the high-loop map of the universality classes
of the theory (1) as shown in figure 1. There, the domains governed by different universality
classes are bounded by lines for marginal dimensions and the degeneracy line. The FP M is
stable for values m and n contained in the dark regions. The stability regions of the FPs PO(m)

and PO(mn) are horizontally and vertically hatched respectively. In the cross-hatched region in
figure 1(a) both O(m) and O(mn) FPs are stable. Here, the choice of the universality class
depends on the initial values of couplings u, v. They can be located in one of the two domains
of uv-plane created by the separatrix, which is determined by the unstable mixed FP. The
blank region in figure 1(b) denotes the region of runaway solutions. Let us note that runaway
solutions exist for the cubic-like models (figure 1(a)) also; however, there still exist regions of
initial couplings u, v starting from which the stable FP is attained.

As we mentioned above, the high-loop analysis of the theory (1) encounters difficulties in
some domains of the mn-plane. In particular, these are the domains where the mixed FP either
disappears or can be given by two (physical and unphysical) solutions. Our direct calculations
show that such domains (mainly) inset the regions where the FP M is expected to be unstable
according to equations (3) and (4) and thus does not influence the analysis of figure 1. However,
even if the solution for the FP M is steadily recovered, its stability analysis is obscured for
some values of m, n. In particular, the latter is observed for the physically interesting cases
m = 2, n = 2, 3. In the rest of the paper, we aim to show that the reliability of the stability
analysis depends on the choice of a series that is assumed as its basis.

6 These estimates are in agreement with those obtained by the other methods; see e.g. [31] and a review [8].
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Figure 1. The domains of FP stability for the mn-vector model with different signs of couplings:
∀ u, v � 0 (a) and u > 0, v � 0 (b). The mixed FP is stable for values m and n from dark
regions. The stability regions of O(m) and O(mn) FPs are shaded by horizontal and vertical lines,
respectively. Cross-hatched region (a) means that both O(m) and O(mn) FPs are stable (see text
for details).

Indeed, the stability of a FP is governed by the condition �(ωi) > 0 with the stability
exponents ωi being the eigenvalues of the matrix of derivatives Bij = ∂βui

/∂uj (ui = u, v)
taken at the FP. For the case under consideration, m = 2, n = 2, 3, one of the eigenvalues
(ω2) is large and positive both at the FPs PO(m) and M, so it is the sign of ω1 that controls
the stability of a FP. The non-peturbative considerations [6, 12] relate the exponent to specific
heat and correlation length exponents at the PO(m) FP: ω1 = −α/ν. The exponent appears to
be very small: an adjusted analysis of the 3d six-loop resummed RG expansions results in [8]
ω1(m = 2, ∀n) = 0.007(8) for the FP PO(m), thus providing no definitive answer about its sign.
The behaviour of ω1 in different orders of perturbation theory can be explicitly demonstrated
expanding the exponent at d = 3 in the pseudo-ε expansion [23] parameter τ up to the six-loop
order:

ω1(m = 2, ∀n) = −1/5τ + 0.186074τ2 − 0.000970τ3

+ 0.027858τ4 − 0.014698τ5 + 0.028096τ6 (5)

and making an attempt to evaluate the exponent at τ = 1 on the basis of the Padé table [15]:


−0.2000 −0.0139 −0.0149 0.0130 −0.0017 0.0264
−0.1036 −0.0149 −0.0140 0.0033 0.0079 o

−0.0717 0.0251 0.0053 0.0209 o o

−0.0537 −0.0029 0.0113 o o o

−0.0430 0.0630 o o o o

−0.0351 o o o o o




. (6)

In the table, number of rows and columns corresponds to the orders of denominator and
numerator of appropriate Padé approximant for the exponent (5), the small numbers denote
unreliable data, obtained on the basis of pole-containing approximants and o means that the
approximant cannot be constructed. One can see that the table shows no convergence even
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along the main diagonal and those parallel to it, where the Padé analysis is known to provide
the best convergence of results [15]. So these are both the convergence properties of the series
(5) and the smallness of the numerical value of ω1(m = 2, ∀n) which do not allow us to make
a qualitative statement about the stability of the FP PO(m).

In contrast, if one first defines a pseudo-ε series for the value m = mc where the exponent
ω1(m, ∀n) changes its sign, one gets the series which has much better behaviour [32]:

mc = 4 − 8/3τ + 0.766489τ2 − 0.293632τ3 + 0.193141τ4 − 0.192714τ5. (7)

Indeed, the corresponding Padé table for mc reads


4 1.3333 2.0998 1.8062 1.9993 1.8066
2.4 1.9287 1.8875 1.9227 1.9029 o

2.0839 1.8799 1.9084 1.9085 o o

1.9669 1.9311 1.9085 o o o

1.9398 2.2425 o o o o

1.9106 o o o o o




and leads to the conclusion mc < 2 already in the three-loop order (cf the convergence of the
results along the diagonals of the table). A more efficient Padé–Borel–Leroy resummation
procedure applied to the series (7) results in an estimate [32] mc = 1.912 ± 0.004. From here
one concludes that ω1(m = 2, ∀n) > 0, the FP PO(m) at m = 2, n = 2, 3 is stable and governs
the critical behaviour of the mn-vector model. In this way, the perturbative RG scheme leads
to the results in agreement with general considerations of [12], which show that the theory (1)
belongs to the O(2) universality class for these field dimensions.

Moreover, if one repeats the above analysis for the stability exponents at the FP M, again
by a direct resummation of a series for ω1 one is led to the numerical estimates, which similar
to (6), do not allow for the definite conclusion. In particular, one encounters a controversial
situation when both FPs M and PO(2) are simultaneously stable in the same order of perturbation
theory. In contrast, being interested in the values of m where the exponent ω1 at the FP M
changes its sign, one recovers the series for mc (7) for any n. In this way, one arrives at a
self-consistent picture, where FPs M and PO(m) interchange their stability at m = mc.

Carrying out an analysis of conditions upon which the mn-vector model belongs to the
given universality class we encountered two problems which are worth mentioning at the
concluding part of this paper. The first is that an analysis of the resummed RG functions
directly at fixed space dimensions may lead to an appearance of the unphysical FPs. One
of the ways to check the reliability of an analysis is to keep track of the evolution of the
given FP with continuous change of d up to the upper critical dimension d = 4. The second
observation concerns analysis of the FP stability: taking into consideration the contradictory
results obtained by a direct analysis of the stability exponents we suggest that the most reliable
way to study the boundaries of universality classes in field-theoretical models with several
couplings consists of an investigation of the expansions for marginal dimensions. We believe
that our observations might be useful in the analysis of critical properties of other field-
theoretical models of complicated symmetry.
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